Marc LEVINE, Essen

Torsion indices of smooth projective varieties

This is a report on a joint work with Andre Chatzistimatiou. For a smooth projective variety X of dimension d over a field k, we consider the *torsion* index $\operatorname{Tor}_k X$ of X, this being the order (possibly infinite) of the diagonal in $\operatorname{CH}_d((X \setminus F_0) \times (X \setminus F^1))$, where F_0 is a sufficiently large dimension zero subset of X and F^1 is a sufficiently large codimension one subset of X (one takes F_0 and F^1 large enough so that the order of the diagonal remains constant under further enlargement). For X geometrically integral, we consider as well the geometric torsion index of X, $\operatorname{Tor}_{\bar{k}}(X_{\bar{k}})$ where \bar{k} is the algebraic closure of k. The torsion index gives an upper bound for the exponent of unramified cohomology on X.

We consider the geometric torsion index of a complete intersection $X^{d_1,\ldots,d_r;n}$ of multi-degree $d_1 \geq \ldots \geq d_r \geq 2$ in \mathbb{P}^{n+r} and the torsion index of a generic complete intersection in \mathbb{P}^{n+r} . The geometric construction of Roitman gives the upper bound

$$\operatorname{Tor}_{\bar{k}}(X^{d_1,\dots,d_r;n}_{\bar{k}}) \leq \prod_{i=1}^r d_i!$$

if $\sum_i d_i \leq n+r$. Using the method of Kollár, Voisin, Colliot-Thélène-Pirutka and Totaro, improved by this using the de Rham-Witt complex, we give a lower bound: Let $d_1 \geq \ldots \geq d_r \geq 2$ and $n \geq 3$ be integers such that $\sum_i d_i \leq n+r$. Let p be a prime number and let $m \geq 1$ be an integer such that

(0.1)
$$d_1 \ge p^m \cdot \left[\frac{n+r+1 - \sum_{i=2}^r d_i}{p^m + 1} \right]$$

Then $p^m | \text{Tor}(X)$ for all very general $X = X_{d_1,\dots,d_r} \subset \mathbb{P}^{n+r}$.

Finally, we show that for the generic $X^{d_1,\ldots,d_r;n}$ in \mathbb{P}^{n+r} (ie, the complete intersection defined by homogeneous equations with coefficients being independent variables \ldots, η_i, \ldots), we have the lower bound

$$\prod_{i=1}^{r} d_i!^* |\operatorname{Tor}_{k(\eta)} X^{d_1, \dots, d_r; n}|$$

Here, for a positive integer d, $d!^*$ is the least common multiple of the numbers $1, 2, \ldots, d$. For example, the generic cubic hypersurface in \mathbb{P}^{n+1} with $n \ge 2$ has torsion index equal to six, while the generic quartic hypersurface in \mathbb{P}^{n+1} with $n \ge 3$ has torsion index either 12 or 24.