Marc LEVINE, Essen

Torsion indices of smooth projective varieties

This is a report on a joint work with Andre Chatzistimatiou. For a smooth projective variety X of dimension d over a field k, we consider the torsion index $\operatorname{Tor}_{k} X$ of X, this being the order (possibly infinite) of the diagonal in $\mathrm{CH}_{d}\left(\left(X \backslash F_{0}\right) \times\left(X \backslash F^{1}\right)\right)$, where F_{0} is a sufficiently large dimension zero subset of X and F^{1} is a sufficiently large codimension one subset of X (one takes F_{0} and F^{1} large enough so that the order of the diagonal remains constant under further enlargement). For X geometrically integral, we consider as well the geometric torsion index of X, $\operatorname{Tor}_{\bar{k}}\left(X_{\bar{k}}\right)$ where \bar{k} is the algebraic closure of k. The torsion index gives an upper bound for the exponent of unramified cohomology on X.

We consider the geometric torsion index of a complete intersection $X^{d_{1}, \ldots, d_{r} ; n}$ of multi-degree $d_{1} \geq \ldots \geq d_{r} \geq 2$ in \mathbb{P}^{n+r} and the torsion index of a generic complete intersection in \mathbb{P}^{n+r}. The geometric construction of Roitman gives the upper bound

$$
\operatorname{Tor}_{\bar{k}}\left(X_{\bar{k}}^{d_{1}, \ldots, d_{r} ; n}\right) \leq \prod_{i=1}^{r} d_{i}!
$$

if $\sum_{i} d_{i} \leq n+r$. Using the method of Kollár, Voisin, Colliot-Thélène-Pirutka and Totaro, improved by this using the de Rham-Witt complex, we give a lower bound: Let $d_{1} \geq \ldots \geq d_{r} \geq 2$ and $n \geq 3$ be integers such that $\sum_{i} d_{i} \leq n+r$. Let p be a prime number and let $m \geq 1$ be an integer such that

$$
\begin{equation*}
d_{1} \geq p^{m} \cdot\left\lceil\frac{n+r+1-\sum_{i=2}^{r} d_{i}}{p^{m}+1}\right\rceil \tag{0.1}
\end{equation*}
$$

Then $p^{m} \mid \operatorname{Tor}(X)$ for all very general $X=X_{d_{1}, \ldots, d_{r}} \subset \mathbb{P}^{n+r}$.
Finally, we show that for the generic $X^{d_{1}, \ldots, d_{r} ; n}$ in \mathbb{P}^{n+r} (ie, the complete intersection defined by homogeneous equations with coefficients being independent variables \ldots, η_{i}, \ldots), we have the lower bound

$$
\prod_{i=1}^{r} d_{i}!* \mid \operatorname{Tor}_{k(\eta)} X^{d_{1}, \ldots, d_{r} ; n}
$$

Here, for a positive integer $d, d!^{*}$ is the least common multiple of the numbers $1,2, \ldots, d$. For example, the generic cubic hypersurface in \mathbb{P}^{n+1} with $n \geq 2$ has torsion index equal to six, while the generic quartic hypersurface in \mathbb{P}^{n+1} with $n \geq 3$ has torsion index either 12 or 24 .

